
Guild Implementation
Ractor report

Koichi Sasada

Cookpad Inc.

Communication with me

• I will check tweets with “#ractor” hashtag on Twitter

• I’m at ruby-jp slack workspace, #concurrency

Background
Parallel programming
• Parallel execution on Multi-core CPUs

is important

• Multi-process programming is not easy
• Hard to communicate

• Hard to control resource consumption

• Multi-thread doesn’t support parallel
execution on MRI

Background
Concurrent Thread programming is hard
• Required: Appropriate synchronization for

threads
• Threads can share everything

• Difficult debugging on non-deterministic
nature
• Data race

• Race condition

• Dead/live locking

Goal:
Easy and Parallel concurrent
programming on Ruby

Our proposal:
Ractor – an Actor-like
concurrent abstraction
Memory model: Limiting object sharing

Good communication API

“Guild” → “Ractor”

• Basic concept was proposed with “Guild” code name at
RubyKaigi 2016 and 2018
• http://rubykaigi.org/2016/presentations/ko1.html

• https://rubykaigi.org/2018/presentations/ko1.html

• With Matz, we discussed the name of Guild and decided to
change the class name from Guild to Ractor (Ruby’s Actor-
like).

http://rubykaigi.org/2016/presentations/ko1.html
https://rubykaigi.org/2018/presentations/ko1.html

Ractor
Concepts
• Multiple Ractors in an interpreter process

• Limited object sharing

• Two-types communication between Ractors

• Copy & Move semantics to send messages

• Details:
https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor
.md

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md

Ractor
Concept: Parallel execution
• Multiple Ractors in an interpreter

process
• Ractors run in parallel

• Ractor.new{ expr } makes new Ractor

• Ractor has at least 1 Ruby threads, and
threads in a Ractor can not run in parallel
(~2.7 compatible)

Ractor
Concept: Limited object sharing
• Strictly separate objects into shareable and unshareable

• Unshareable objects – most objects are unshareable

• Sharable objects – special objects
• Immutable objects (== frozen objects which refer shareable objects)

• Class/module objects

• Special shareable objects (Ractor objects etc.)

• Avoid data races and race conditions
• Most of objects are unshareable objects

• Shareable objects require appropriate synchronization by the
interpreter or programmer

Ractor
Concept: Communication/synchronization
• Two-types communication between Ractors

• Push type: Actor-like send/receive object transferring
• Ractor#send(obj) and Ractor.recv pair

• Sender knows receiver ractor (dst.send(obj))

• Pull type: Passive message passing style object transferring
• Ractor.yield(obj) and Ractor#take pair

• Receiver knows a sender Ractor (src.take)

• Copy & Move semantics to send messages
• Passed objects will be copied (deep copy)

• Move mode is also supported (shallow copy)
• After moving, moved objects can’t be touched by sender Ractor

Ractor
Push/Active message passing
• Actor-like communication

• Sender knows receiving Ractor

• Receiver does not know sending Ractor

• Each Ractor has a queue which
connected to the incoming port.
• r1.send(x) enqueues x into the queue

• Queue is unlimited queue, so non blocking

• Ractor.recv dequeues queued x
• Block if there is no queued objects

Ractor r1

Queue

x

x

Ractor.recv

f(x)

r1.send(x)

incoming
port

Ractor main

Ractor r1

Queue

x

r1.send(x)

x

Ractor.recv
or self.recv

f(x)

r2.send(f(x))

Ractor r2

y

g(y)

main.send(g(y))
Queue

f(x)

Ractor.recv #=> g(f(x))

Ractor.recv
or self.recv

Queue

g(f(x))

Pipeline with Traditional Actor model

Ractor
Pull/Passive message passing
• Pull type communication

• Sender does not know receiver
• Receiver knows sender

• Each Ractor has outgoing port.
• Ractor.yield(y) puts y on outgoing port
• r2.take get y from r2’s outgoing port
• These methods will block until another

Ractor take/yield → Rendezvous
synchronization

• Block value of given block for
Ractor.new will be returned by
Ractor.yield implicitly →
Ractor#take can supervise the
Ractor’s liveness.

Ractor r2

y

g(y)

Ractor.yield(g(y))

Queue
outgoing

port

Ractor main

Ractor r1

Queue

x

r1.send(x)

x

Ractor.recv
or self.recv

f(x)

Ractor.yield(f(x))
or self.yield(f(x))

Ractor r2

y = r1.take

y

g(y)

Ractor.yield(g(y))

Queue

r2.take #=> g(f(x))

Pipeline with yield/take

written in code…

r1 = Ractor.new do

x = Ractor.recv

Ractor.yield(f(x))

end

r2 = Ractor.new r1 do |r1|

y = r1.take

Ractor.yield(g(y))

end

r1.send(:x)

something()

r2.take #=> g(f(:x))

parallel execution

something()

f() and g()

Ractor.yield and Ractor#take
Similarity with Fiber

Fiber

f = Fiber.new do

Fiber.yield 1

Fiber.yield 2

3

end

f.resume #=> 1

f.resume #=> 2

f.resume #=> 3

Ractor

r = Rator.new do

Ractor.yield 1

Ractor.yield 2

3

end

r.take #=> 1

r.take #=> 2

r.take #=> 3

Ractor
Ractor#select
• Ractor.select(r1, r2, …) will wait from r1, r2, …

• Similar to Go’s select statement

• API can be improved more
• For example: Event register approach such as Concurrent-ruby’s channel

Load-balancing multi-workers with a
bridge Ractor

b (bridge)

main

b.send(task)

w1

w2

Ractor.select(w1, w2)

Ractor.yield(
do_task(b.take))

← Exception

Ractor.yield(
do_task(b.take))

b (bridge)

main

b.send(task)

w1

w2

Ractor.select(x1, x2)

Ractor.yield(
do_task(b.take))

Ractor.yield(
do_task(b.take))

x1

x2

Ractor.yield(
do_task(w1.take))

Ractor.yield(
do_task(w2.take))

Load-balancing multi-workers with a
bridge Ractor

incoming port/outgoing port

• Two ports
• incoming port

• Connected to the incoming queue
• Sent message is put to the queue

• outgoing port
• Yielded message will be put

• They can be closed
• close_incoming

• Ractor#send raises an error if incoming port is closed
• Ractor.recv raise an error if incoming queue is empty and port is closed

• close_outgoing
• Ractor#take raises an error if outgoing port is closed
• Ractor.yield raise an error if outgoing port is closed

• When Ractor terminates, both ports are closed automatically

Ractor
Supervise Ractors
• Ractor#take can supervise Ractors

• This method can check return value of Ractor’s given block
(Ractor.new{ … }) and Block’s exception.

→ Ractor.select(r1, r2, …) can supervise r1, r2, …

• Compare with other languages
• Erlang: link to other process and death event will be notified to the

linked process.

• Go: causes panic on unexpected goroutine’s termination

• Ruby (Ractor): Ractor.select(r1, r2, …) can supervise them

b (bridge)

main

b.send(task)

w1

w2

Ractor.select(x1, x2)

Ractor.yield(
do_task(b.take))

Ractor.yield(
do_task(b.take))

x1

x2

Ractor.yield(
do_task(w1.take))

Ractor.yield(
do_task(w2.take))

Load-balancing multi-workers with a
bridge Ractor

← Exception

Advantage of Actor-like based approach
compare with channel-based approach
• Easy error detection

• If receiver Ractor is died, the error will be occurred

• Channel-based approach, we can’t detect destination side-Ractor’s
termination without a trick (ex: close channel’s port in ensure clause)

Ractor main

r1.send(x)

Ractor r1

#=> RactorClosedError
Died unexpectedly

Ractor
Message passing options

• Reference
• Shareable objects will be sent by reference (pointer)

• Copy: Ractor#send(obj), Ractor.yield(obj)
• Objects will be deep copied

• Move: Ractor#send(obj, move:true), Ractor.yield(obj, move:true)
• Shallow copy

• Long string

• IO (File, Socket, …)

• Source Ractor can not touch moved objects (will cause exception)

Ractor
Creation
• Ractor.new{ expr } will create new Ractor and execute
expr in parallel with other Ractors

• If expr contains reference to the outer-variables, it will be
error
• ex) a = [1]; Ractor.new{ p a } #=> Error

• Self of given block will be its Ractor object

• Block parameters will be sent block arguments
• ex) Ractor.new([1]){|a| p a}

#=> r = Ractor.new{a = Ractor.recv; p a}

r.send([1])

Ractor
Semantic changes
• 100% compatible if only main Ractor is used

• Limited to main Ractor (first Ractor)
• Global variables $gv

• Some gvars ($stdout, …) will be Ractor local

• Class variables @@cv

• Instance variables of shareable objects
• Ivars of class/module are prohibited

• Constants refer to unshareable objects
• C = [1] is prohibited

• For Ractor programming, many modifications are needed

Ractor
Example: Web application server

a: accept ractor

main

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

a.take
process(req)

Supervise: Ractor.select(*workers, a)

b.send(s.accept,
move: true)

request response
b (bridge)

N workers

Ractor progress
• https://github.com/ko1/ruby/blob/ractor_parallel/
✅ Basic Ractor API seems working

✅ Ruby apps without Ractor can work (compatible w/ current)

⬛ Complex application with Ractor (not enough synchs)

⬛ Existing Ruby’s API considerations

⬛ C-extension supports

⬛ Object passing copy/move support (support only a few types)

⬛ Performance tuning
• Poor algorithm for Ractor communications

• TLS tuning

• Object space tuning

$./miniruby -e Ractor.new{}

<internal:ractor>:37: warning: Ractor is experimental,

and the behavior may change in future versions of Ruby!

Also there are many implementation issues.

https://github.com/ko1/ruby/blob/ractor_parallel/

Ractor
Evaluation

Evaluation
Create/Invoke/wait time comparison for 10k

https://gist.github.com/ko1/6257532de84cdb4212581c66415155ed

WSL2 (Ubuntu 20.04) Ubuntu 18.04

process 9.608186 36.939180
ractor 0.526030 0.259494
thread 0.451909 0.137313
fiber 0.022461 0.020944
proc 0.005264 0.003301

(sec)

TODO: Make Ractors/threads creation faster as fibers (Ruby 3.1~)

https://gist.github.com/ko1/6257532de84cdb4212581c66415155ed

Evaluation
Prime number detection
• Ractor worker example

• Create several worker ractors

• Send tasks to them, and aggregate the answer

• Task is “Integer#prime?”
• 1_000.times{|i| (2**TN + i).prime?}

• TN = 10 to 50

• TN = 10 → 1024.prime?, 1025.prime?, …

• TN = 50 → 1125899906842624.prime?, 1125899906842625.prime?, …

require 'prime'

RN = ARGV.shift.to_i

TN = ARGV.shift.to_i

N = 1_000

if RN == 0

sequential program

ans = N.times.map{|i|

n = 2 ** TN + i

[n, n.prime?]

}

pp ans

else

parallel program

pipe = Ractor.new do

loop do

Ractor.yield Ractor.recv

end

end

workers = (1..RN).map do

Ractor.new pipe do |pipe|

while n = pipe.take

Ractor.yield [n, n.prime?]

end

end

end

(1..N).each{|i|

pipe << 2 ** TN + I

}

ans = (1..N).map{

_r, (n, b) = Ractor.select(*workers)

[n, b]

}.sort_by{|(n, b)| n}

end

https://gist.github.com/ko1/09798986
10f33aef921d864e2f936d0b

https://gist.github.com/ko1/0979898610f33aef921d864e2f936d0b

b (bridge)

main

N.times{|i|
b.send(2**TN+i)

}

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

worker

t = b.take
prime?(t)

RN workers

Ractor.select(workers)

0
1
2
3
4
5

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50S
p

e
e
d

u
p

 r
a
c
ti

o

(s
e
q

/p
a
r)

TN

1 2 3 4 5 6 7 8 10 11

12 13 14 15 16 17 18 19 20

Evaluation result
on 4 core 8 threads machine

RN

← Slower than sequential Faster than sequential →

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
xe

c
 t

im
e
 (

s
e
c
)

Ractor number (RN)

46 47 48 49 50

Evaluation result
on 4 core 8 threads machine

F
a
s
te

r

TN (prime?(2**TN+i)):

0 Ractors
→ sequential

0

0.05

0.1

0.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
xe

c
 t

im
e
 (

s
e
c
)

Ractor number (RN)

10 11 12 13 14

Evaluation result
on 4 core 8 threads machine

F
a
s
te

r

TN (prime?(2**TN+i)):

Conclusion

• Ruby program can run in parallel with Ractor without thread-
safety headache

• Ractor API and implementation is not matured, but we are
working on it for Ruby 3

