Gutta Implementation
Ractor report

Koichi Sasada
Cookpad Inc.

P

cookpad

Communication with me

| will check tweets with “#ractor” hashtag on Twitter
* 'm at ruby-jp slack workspace, #concurrency

Sackground
Parallel programming

e Parallel execution on Multi-core CPUs
IS Important

 Multi-process programming is not easy
« Hard to communicate
 Hard to control resource consumption

 Multi-thread doesn’t support parallel
execution on MR

Backgrouna
Concurrent Thread programming is hard

« Required: Appropriate synchronization for
threads

 Threads can share everything

« Difficult debugging on non-deterministic

nature
 Data race
 Race condition
« Dead/live locking

Goal:
-asy and Parallel concurrent

programming on Ruby

Qur proposal:
Ractor — an Actor-like
concurrent apstraction

Memory model: Limiting object sharing

Good communication AP

“Guild” — “Ractor”

« Basic concept was proposed with “Guild” code name at
RubyKaigi 2016 and 2018
 http://rubykaigi.org/2016/presentations/kol.html|
e https://rubykaigi.org/2018/presentations/kol.html

e With Matz, we discussed the name of Guild and decided to

change the class name from Guild to Ractor (Ruby’s Actor-
like).

http://rubykaigi.org/2016/presentations/ko1.html
https://rubykaigi.org/2018/presentations/ko1.html

Ractor
Concepts

 Multiple Ractors in an interpreter process

« Limited object sharing

« Two-types communication between Ractors
« Copy & Move semantics to send messages

e Details:
https://github.com/kol/ruby/blob/ractor parallel/doc/ractor

.md

https://github.com/ko1/ruby/blob/ractor_parallel/doc/ractor.md

Ractor
Concept: Parallel execution

 Multiple Ractors in an interpreter
process
« Ractors run in parallel
* Ractor.new{ expr } makes new Ractor

« Ractor has at least 1 Ruby threads, and
threads in a Ractor can not run in parallel
(~2.7 compatible)

Ractor
Concept: Limited object sharing

« Strictly separate objects into shareable and unshareable
« Unshareable objects — most objects are unshareable

« Sharable objects — special objects
« Immutable objects (== frozen objects which refer shareable objects)

 Class/module objects
« Special shareable objects (Ractor objects etc.)
* Avoid data races and race conditions
« Most of objects are unshareable objects
« Shareable objects require appropriate synchronization by the
Interpreter or programmer

Ractor
Concept: Communication/synchronization

 Two-types communication between Ractors
« Push type: Actor-like send/receive object transferring

 Ractorf#send(obj) and Ractor.recv pair
« Sender knows receiver ractor (dst.send(obj))

« Pull type: Passive message passing style object transferring

« Ractor.yield(obj) and Ractori#itake pair
« Receiver knows a sender Ractor (srec. take)

« Copy & Move semantics to send messages
« Passed objects will be copied (deep copy)

« Move mode is also supported (shallow copy)
« After moving, moved objects can’t be touched by sender Ractor

K Ractor

« Actor-like communication
« Sender knows receiving Ractor
« Receiver does not know sending Ractor

« Each Ractor has a queue which
connected to the incoming port.
e r1.send (x) enqueues x into the queue
* Queue is unlimited queue, so non blocking

« Ractor.recv dequeues queued X
« Block if there is no queued objects

Push/Active message passing

rl.send(x)

@
incoming
port

|

Ractor rl

X

Ractor.recv

Pipeline with Traditional Actor model

RAE

X

Ractor rl

) 4

Ractor.recv
or self.recv

2. d(f
r2.send(f(x)) o

Ractor r2

main.send(g(y))

Ractor.recv
or self.recv

¢

rl.send(x)

g(f(x))
Ractor.recv #=> g(f(x)) «—

Ractor main | ‘

Ractor

e Pull type communication
« Sender does not know receiver
e Receiver knows sender

« Each Ractor has outgoing port.
* Ractor.yield(y) putsy on outgoing port
e r2.take gety from r2’s outgoing port

» These methods will block until another
Ractor take/yield — Rendezvous
synchronization

« Block value of given block for
Ractor.new Will be returned by
Ractor.yield implicitly —
Ractor#take can supervise the
Ractor’s liveness.

Pull/Passive message passing

*—
Queue

Ractor r2

Ractor.yield(g(y))

g

outgoing
port

Pipeline with yield/take

RAE

X

Ractor rl

Ractor.yield(f(x))
or self.yield(f(x)) |

&

>

Ractor.recv
or self.recv

*

Ractor r2

Ractor.yield(g(y))

»(
TG

y = rl.take

A4

rl.send(x)

Ractor main

r2.take #=> g(f(x)) <

written in code---

rl = Ractor.new do
X = Ractor.recv
Ractor.yield (f(x))
end
r2 = Ractor.new rl do |rl|
y = rl.take
Ractor.yield (g (y))
end
rl.send(:x)
something ()
r2.take #=> g (f(:x))
parallel execution
something ()
f£() and g()

K Ractor.yield and Ractor#take

Similarity with Fiber

Fiber Ractor

f = Fiber.new do r = Rator.new do
Fiber.yield 1 Ractor.yield 1
Fiber.yield 2 Ractor.yield 2
3 3

end end

f.resume #=> 1 r.take #=> 1

f.resume #=> 2 r.take #=> 2

f.resume #=> 3 r.take #=> 3

Ractor
Ractor#select

e Ractor.select (rl, r2, ..) will waitfromrl,r2, -
e Similar to Go’s select statement

APl can be improved more
 For example: Event register approach such as Concurrent-ruby’s channel

g
53
sk
L o

oridge Ractor

b.send(task)

_oad-balancing multi-workers with a

wl

® Ractor.yield(

O

main

O—

b (bridge) do_task(b.take))
O
v w2
@ Ractor.yield(
do task(b.take))
O

Ractor.select(w1, w2)

— Exception

_oad-balancing multi-workers with a
oridge Ractor

— @

b.send(task)

x1

® Ractor.yield(¢
do task(wl.take))

wl
® Ractor.yield(¢
b (bridge) do_task(b.take))
O
w2

@ Ractor.yield(

main

do_task(b.take))

¢

Ractor.select(x1, x2)

X2

o Ractor.yield((
do task(w?2.take))

o e 4

* incoming port/outgoing port

11

\ i 2 1 2
‘HEER’

* Two ports
. incoming port LRI EELEL
« Connected to the incoming queue
« Sent message is put to the queue
e outgoing port
e Yielded message will be put

« They can be closed

e close_incoming

* Ractor#send raises an error if incoming port is closed

e Ractor.recv raise an error if incoming queue is empty and port is closed
e close_outgoing

« Ractor#take raises an error if outgoing port is closed

e Ractor.yield raise an error if outgoing port is closed

 When Ractor terminates, both ports are closed automatically

Ractor % ‘—'
Supervise Ractors ® |

e Ractor#take can supervise Ractors

 This method can check return value of Ractor’s given block
(Ractor.new{ .. })and Block’s exception.

— Ractor.select (rl, r2, ..) cansuperviserl,r2,

« Compare with other languages

« Erlang: link to other process and death event will be notified to the
linked process.

« (Go: causes panic on unexpected goroutine’s termination
« Ruby (Ractor): Ractor.select(r1, r2, --+) can supervise them

_oad-balancing multi-workers with a
oridge Ractor

— @

b.send(task)

x1

® Ractor.yield(¢
do task(wl.take))

wl
® Ractor.yield(¢
b (bridge) do_task(b.take))
O
w2

@ Ractor.yield(

main

do_task(b.take))

¢

Ractor.select(x1, x2)

X2

o Ractor.yield((
do task(w?2.take))

— Exception

~

1

X Advantage of Actor-like based approach
compare with channel-based approach

« Easy error detection
e |f receiver Ractor is died, the error will be occurred

« Channel-based approach, we can’t detect destination side-Ractor’s
termination without a trick (ex: close channel’s port in ensure clause)

Ractor main Ractor rl

rl.send(x) &

#=> RactorClosedError =
Died unexpectedly “ 'W‘ ‘

S

P

Ractor
Vliessage passing options

« Reference
« Shareable objects will be sent by reference (pointer)

« Copy: Ractor#send (obj), Ractor.yield (ob7j)
* Objects will be deep copied

* Move: Ractor#send (obj, move:true), Ractor.yield(obj, move:true)
« Shallow copy
 Long string
« 10 (File, Socket, --+)
« Source Ractor can not touch moved objects (will cause exception)

= Ractor

Creation

* Ractor.new{ expr } will create new Ractor and execute
expr in parallel with other Ractors

* |f expr contains reference to the outer-variables, it will be
error
-ex)a = [1]; Ractor.new{ p a } #=> Error

« Self of given block will be its Ractor object

« Block parameters will be sent block arguments

. ex) Ractor.new([1]){lal p a}
#=> r = Ractor.new{a = Ractor.recv; p a}

r.send([1])

Ractor
Semantic changes

« 100% compatible if only main Ractor is used

 Limited to main Ractor (first Ractor)
» Global variables $gv
« Some gvars ($stdout, ---) will be Ractor local
« Class variables @@cy

* Instance variables of shareable objects
« |vars of class/module are prohibited

« Constants refer to unshareable objects
e C = [1] is prohibited

« For Ractor programming, many modifications are needed

Ractor
-xample: Web application server

request

—

a. accept ractor

b.send(s.accept,
move: true)

¢

4>+ b (bridge) ﬁg—

A4

main

response

N workers
! |
! |
! |
! |
o worker
@ a.take
— process(req)

—)

Supervise: Ractor.select(*workers, a)

Ractor progress

e https://github.com/kol/ruby/blob/ractor parallel/
Basic Ractor APl seems working
Ruby apps without Ractor can work (compatible w/ current)
B Complex application with Ractor (not enough synchs)
I Existing Ruby’s API considerations
B C-extension supports
I Object passing copy/move support (support only a few types)
I Performance tuning

« Poor algorithm for Ractor communications ~ ‘
« TLS tuning 4

: : >~
« Object space tuning ‘

$./miniruby -e Ractor.new{}
<internal:ractor>:37: warning: Ractor is experimental,

S

and the behavior may change in future versions of Ruby!
Also there are many implementation issues.

https://github.com/ko1/ruby/blob/ractor_parallel/

Ractor
-valuation

Evaluation
Create/Invoke/wait time comparison for 10k

' |WSL2 (Ubuntu 20.04) |Ubuntu 18.04

process 9.608186 36.939180
ractor 0.526030 0.259494
thread 0.451909 0.137313
fiber 0.022461 0.020944
Droc 0.005264 0.003301

(sec)

TODO: Make Ractors/threads creation faster as fibers (Ruby 3.1~)

https://gist.github.com/ko1/6257532de84cdb4212581¢c66415155ed

https://gist.github.com/ko1/6257532de84cdb4212581c66415155ed

-valuation
Prime number detection

« Ractor worker example
« Create several worker ractors
« Send tasks to them, and aggregate the answer

e Task is “Integer#prime?”
*1l 000.times{ 1| (2**TN + 1) .prime?}

* TN = 10 to 50
« TN =10 — 1024.prime?, 1025.prime?, ---

« TN =50 — 1125899906842624.prime?, 1125899906842625.prime?, -

m

o e 4

ﬁ:" require 'prime'

RN
TN
N

1if

ARGV.shift.to i
ARGV.shift.to i
1 000

RN == 0

sequential program

ans = N.times.map{|1|
n =2 ** TN + i

[n, n.prime?]

pp ans
else

https://sist.github.com/ko1/09798986

10f33aef921d864e2f936d0b

parallel program
pipe = Ractor.new do
loop do
Ractor.yield Ractor.recv
end

end

workers = (1..RN).map do
Ractor.new pipe do |pipel
while n = pipe.take
Ractor.yield [n, n.prime?]
end
end

end

(1..N) .each{|1]

pipe << 2 ** TN + T

ans = (1..N) .map({
~r, (n, b) = Ractor.select (*workers)
[n, bl

}.sort by{l (n, b)| n}

end

https://gist.github.com/ko1/0979898610f33aef921d864e2f936d0b

RN workers
o . |
b (bridge) O = |
A , .. worker
. . ’. 4 || .
N.times{|i | | [® t = b.take j’O_
} b.send(2**TN+i) g prime?(t)
main
() O

Ractor.select(workers)

-valuation result
on 4 core & threads machine

5 — Slower than sequential Faster than sequential —
O
+ 4 -
O —~ =~
c % 3]
o & /-
— ~ 2 / —
S 3 1 g VAN ~
é Nl 0 [R
b 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

TN
1l -2 -3 -4 -5 —6 —7 —8 —10-11
RN

12—13—14—15—-16—17—18—19—-20

X Fvaluation result
on 4 core 8 threads machine

—
-

Exec time (sec)
Jo1se 4

-

012 3 45 6 7 8 91011121314151617181920

0 Ractors
" sequential Ractor number (RN)

TN (prime?(2**TN+i)): —46 —47 —48 —49 —50

@J — .
R Evaluation result
on 4 core 8 threads machine

__0.15

@)

7

~— 0.1 = e
O Q
S o
*; 0.05 /\ -
D)

L|>j O — ,———

01 2 3 45 6 7 8 910111213141516171819 20
Ractor number (RN)

TN (prime?(2**TN+i)): —10 —11 —12 —13 —14

Conclusion

* Ruby program can run in parallel with Ractor without thread-
safety headache

e Ractor APl and implementation is not matured, but we are
working on it for Ruby 3

