Ruby 3 2@ 7=
HLWIITEITETILDIRE
H H—

WA 1T75h

heroku

Today’s talk

*One goal of Ruby 3: better concurrency support
*Guild: Isolate objects between guilds
* Objects belong to one guild
* Threads belong to different guilds can run parallel
e Communication using “transfer membership”

*No implementation (just idea)

Background
Ruby 3

*3 goals
* Performance (JIT compiler)
e Static type checking

* Concurrency
* Enable parallel programming in Ruby
* Better programming experience than threads

Background
Parallel and concurrent thread programming

*Some Ruby interpreters support parallel threads
* JRuby
* Rubinius

Multi-thread quiz

* What happen on this program?

ary =1[1, 2, 3]
tl = Thread.new({

ary.concat [4, 5, 6] (1) [1, 2, 3]

}

t2 = Thread.new{ (2) [1’ 2,3,4,5, 6]
p ary # what’s happen? (3) (1) or (2)

}.join

Multi-thread quiz

* Answer: (4) depends on an interpreter

arv=[12,3] On MRI, (3) is correct

tl = Thread.new({
ary.concat [4, 5, 6]

} It will shows
t2 = Thread.new{ [1, 2, 3] or
what’s h ?
}TO?I:V what's happen [1’ 2’ 3’ 4’ 5’ 6]

(depends on thread
switching timing)

Multi-thread quiz

* Answer: (4) depends on an interpreter

ary =[1, 2, 3] On JRuby:

tl = Thread.new({
ary.concat [4, 5, 6]
iz _ Thread.new(It can cause Java
p ary # what’s happen? exception because
Hon “Array#concat” is not

thread safe

On JRuby ...

similar program
h = Hash.new(0)
NA=1 000
10 _000.times{
ary =]
(1..10).each{
Thread.new{
NA.times{|i|
ary.concat [i]

}
}

}
t2 = Thread.new{

s = ary.dup
}.join

}

Unhandled Java exception: java.lang.NullPointerException

java.lang.NullPointerException: null
rbinspect at org/jruby/RubyBasicObject.java:1105
inspect at org/jruby/RubyObiject.java:516
inspectAry at org/jruby/RubyArray.java:1469
inspect at org/jruby/RubyArray.java:1497
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:293
call at org/jruby/runtime/callsite/CachingCallSite.java:131
block in t.rb at t.rb:17
yieldDirect at org/jruby/runtime/CompiledIRBlockBody.java:156
yieldSpecific at org/jruby/runtime/IRBlockBody.java:73
yieldSpecific at org/jruby/runtime/Block.java:136
times at org/jruby/RubyFixnum.java:291
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:303
callBlock at org/jruby/runtime/callsite/CachingCallSite.java:141
call at org/jruby/runtime/callsite/CachingCallSite.java:145
<top> at t.rb:3
invokeWithArguments at java/lang/invoke/MethodHandle.java:599
load at org/jruby/ir/Compiler.java:111
runScript at org/jruby/Ruby.java:833
runScript at org/jruby/Ruby.java:825
runNormally at org/jruby/Ruby.java:760
runFromMain at org/jruby/Ruby.java:579
doRunFromMain at org/jruby/Main.java:425
internalRun at org/jruby/Main.java:313
run at org/jruby/Main.java:242
main at org/jruby/Main.java:204

jruby 9.1.2.0 (2.3.0) 2016-05-26 7357c8f Open)JDK 64-Bit Server VM 24.95-b01 on 1.7.0_101-b00 +jit [linux-x86_64]
On 8 hardware threads machine

Background
Muilti-threads programming is difficult

*Introduce data race, race condition
* Introduce deadlock, livelock Difficult to make

« Difficulty on debugging because of correct (bug-free)
nondeterministic behavior programs
e difficult to reproduce same problem

o Difficult to make
* Difficult to tune performance fast programs

Background
Difficulty of multi-threads programs

*We need to synchronize all sharing mutable
objects correctly
* We need to know which methods are thread-safe.
* Easy to track all on small program
* Difficult to track on big programs, especially on
programs using gems
*We need to check all of source codes, or believe
library documents (but documents should be correct)

* Multi-threads prog. requires “completeness”

Background
Difficulty of multi-threads programs (cont.)

*For debugging, it is difficult to find out the bugs

* Backtrace may not work well because the problem
may be placed on another line.

* Bugs don’t appear frequently with small data

* Difficult to reproduce issues because of
nondeterministic behavior

Background
Y1 synchronization mechanism

* Many synchronization mechanisms...
* Mutual exclusion (Mutex), monitor, critical section
* Transactional memory (optimistic lock)
* Atomic instructions
* Synchronized Queue

* Research on many lightweight lock algorithms
*They assume we can use them correctly

Study from other languages

*Shell script with pipes, Racket (Place)
* Copy mutable data between processes w/ pipes

*Erlang/Elixir i
* Do not allow mutable data

*Clojure
* Basically do not allow mutable data
* Special data structure to share mutable obJects

* Note that it can share mutable objects on Java layer
NOTE: we do not list approaches using “type system”

Summary of approaches

 Communication with copied data (shell scripts)
* Good: we don’t need locks
* Bad: copy everything is slow

* Prohibit mutable objects
* Good: we don’t need locks
* Bad: Ruby utilizes many “write” operations. Unacceptable.

* Provide special data structure to share mutable objects

* Good: we don’t need locks (who don’t use such special data
structures)

* Bad: Difficult to use special data structures.

Previous work for “parallel” Ruby

* Parallel multi-thread (2007 Sasada)

* Better multi-process interface (2012 Nakagawa)
* Easy and fast shared memory

* Multi-VM (MVM) (2012 Sasada)

* Make several VMSs in one process
* Similar to Place in Racket programming langauge

Previous work for “parallel” Ruby

 Parallel multi-thread (2007 Sasada)
* ® Thread isn’t promising (at least Ruby area)

* Better multi-process interface (2012 Nakagawa)
« ® Multi-process consume more memory

* Multi-VM (MVM) (2012 Sasada)
e ® Difficult to share same resources

Our goal for Ruby 3

*We need to keep compatibility with Ruby 2.
*We can make parallel program.
* We shouldn’t consider about locks any more.

* We can share objects with copy, but copy
operation should be fast.

*We should share objects if we can.

*We can provide special objects to share mutable
objects like Clojure if we really need speed.

“Guild”

New concurrency model for Ruby 3

Guild: New concurrency abstraction

*Guild has at least one thread (and a thread has
at least one fiber)

Guild Guild
Thread Thread Thread -
Fib :
iber Cbar Fiber
Fiber Fiper
J

Threads in different guilds can run in Parallel

* Threads in different guilds can run in parallel

* Threads in a same guild can not run in parallel
because of GVL (or GGL: Giant Guild Lock)

Acquire GGL

G1:T1 m—) ————>

Acquire GGL

Guild and objects:
All objects have their own membership

* All of mutable objects should belong to only one
Guild (all mutable objects are member of one guild)

* Other guilds can not access objects

Guild 1 NG 4 Guild 2 5
O . ©)

Object membership
Object type

*3 types of objects

* Unshared objects
* Mutable objects (normal case)
* Belong to one Guild

* Shared objects

* Immutable objects

* Special shared objects
* Class, module, Communication objects (Guild, channel)

Object membership

Only one guild can access mutable object
- We don’t need to consider about locks

Because:

NO data races and NO race conditions
(if all guilds use only one thread)

Inter guilds communication

*“Guild::Channel” to communicate each guilds

*TWO communhnication methods

1. Copy

2. Transfer membership or Move in short
* Note that we don’t guarantee identity transfer

Copy using Channel

channel.transfer(o1l) ol = channel.receive

02 02
03 03

0O2:Data 0O2:Data

~_ | O3:Data Seagmm O3:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

02

03

0O2:Data

~_ 0O3:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

Guildl / Guild2 \

‘ channel >
From Guild1 perspective, MOVE $ —
transferred objects are invalidated

Sharing immutable objects

Immutable objects can be shared with any
guilds
*al =[1, 2, 3].freeze: al is Immutable object
*a2 =[1, Object.new, 3].freeze: a2 is not immutable

*\We only need to send references
*very lightweight, like thread-programming

* Numeric objects, symbols, true, false, nil are
immutable (from Ruby 2.0, 2.1, 2.2)

Sharing immutable objects
We can share reference to immutable objects

channel.transfer(o1l) ol = channel.receive

0O2:Data

Use-case 1: master — worker type

def fib(n) ... end
g fib = Guild.new(script: %q{
ch = Guild.default_channel

while n, return_ch = ch.receive Main ch Fibonacci
return_ch.transfer fib(n)

end Guild <: Guild
}H eturn_ch

n, return_ch

ch = Guild::Channel.new Answer of fib(n)
g fib.transfer([3, ch])
o ch.receive NOTE: Making other Fibonacci guilds,

you can compute fib(n) in parallel

Use-case 2: pipeline

result_ch = Guild::Channel.new
g_pipe3 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3(obj)
Guild.argv[0].transfer_membership(obj)
end
}, argv: [result_ch])
g_pipe2 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj2(obj)
Guild.argv[0].transfer_membership(obj)
end
}, argv: [g_pipe3])
g_pipel = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_objl(obj)
Guild.argv[0].transfer_membership(obj)
end

}, argv: [g_pipe2])
obj = SomeClass.new

g_pipel.transfer_membership(obj)
obj = result_ch.receive

Obj’

ove
nd modify

Move
and modify

odify

Use-case:

Bank example
Only bank guild maintains bank data

g bank = Guild.new(script: %q{
while account_from, account_to, amount, Ba n k
ch = Guild.default_channel.receive .
if (Bank[account_from].balance < amount) G Ul |d
ch.transfer :NOPE
else requests

Bank[account_to].balance += amount
Bank[account_from].balance -= amount
ch.transfer :YEP

end Other Other

end

) guilds guilds

Use-case:
ntroduce special data structure

* |deas of special data
structure to share
mutable objects Pl
* Use external RDB

* In process/external
Key/value store

e Software transactional

memory Other Other
T guilds guilds

Summary of use cases

* Making multiple workers and compute in parallel
e Requests and responses are communicate via channels
* You can send it with copy or move
* Maybe web application can employ this model

* Making Pipeline structures and compute in parallel
e Each task has own Guild
* Receive target object, modify it and send it next pipeline
* You will send it with move (transfer membership)
* It will help applications like applying several filters for input data

* Own responsibility by one Guild
* All accesses are managed by one responsible Guild
* |f you want to share mutable objects, we need special data structures
» External RDBs or key/value stores are also good idea for this purpose

Compare between
Thread model and Guild model

*On threads, it is difficult to find out which objects
are shared mutable objects

*On Guilds, there are no shared mutable objects

* If there are special data structure to share mutable
objects, we only need to check around this code

- Encourage “Safe” and “Easy” programming

Compare between
Thread model and Guild model

* On threads, inter threads communication is very fast.

* On guilds, inter guilds communication introduce
overhead

* “Move” (transfer membership) technique can reduce
this kind of overheads

Trade-off: Performance v.s. Safety/Easily
Which do you want to choose?

Discussion: The name of “Guild”

* “Guild” is good metaphor for “object’s
membership”

* Check duplication

* First letter is not same as other similar abstractions
* For variable names
* P is for Processes, T is for Threads, F is for Fibers

* There are no duplicating top-level classes and
modules in all of rubygems

Implementation of “Guild”

*How to implement inter Guilds communication
*How to isolate process global data

How to implement inter Guilds communication

*Copy
* Move (transfer membership)

Copy using Channel

channel.transfer(o1l) ol = channel.receive

02 02
03 03

0O2:Data 0O2:Data

~_ | O3:Data Seagmm O3:Data

Copy using Channel
Implementation

channel.transfer(o1l) ol = channel.receive

O2:Data

We can use CoW
technique for data

Copy using Channel
Implementation

channel.transfer(o1)

0l = channel.receive

02 02
03 03

O2:Data . 0O2:Data
) Move/Join

O3:Data

Seagmm O3:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

02

03

0O2:Data

~_ 0O3:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

Guildl / Guild2 \

‘ channel >
From Guild1 perspective, MOVE $ —
transferred objects are invalidated

Move using Channel
Implementation

channel.transfer_membership(o1)

Guildl

C

(2) Invalidate originals

(1) Mak
deep opy
Rannel

)

@ a

@ -

0l = channel.receive

é Guild2 A

Move using Channel
Implementation

channel.transfer_membership(o1)

Guildl

(2) Invalldate orlglnals

a

annel

4

_ \M {3)-iviove/Join

0l = channel.receive

é Guild?2 A

@

Ruby global data

* Global variables (Sfoo)

e Change them to Guild local variables COmDa

* Class and module objects
* Share between guilds

e Class variables

* Change them to guild local. So that it is guild/class local variables h RUby 2

* Constants
* Share between guilds

* However if assigned object is not a immutable object, this constant is accessed only by setting guilds. If other
guilds try to access it, them cause error.

* Instance variables of class and module objects
* Difficult. There are several approaches.
* Proc/Binding objects
* Make it copy-able with env objects or env independent objects

* ObjectSpace.each_object
* OMG

Interpreter process global data

* GC/Heap
* Share it. Do stop the world parallel marking- and lazy concurrent sweeping.
* Synchronize only at page acquire timing. No any synchronization at creation time.

* Inline method cache
* To fill new entry, create an inline cache object and update atomically.

* Tables (such as method tables and constant tables)
* Introduce mutual exclusions.

* Current working directory (cwd)

* Each guild should have own cwd (using openat and so on).
e Signal

* Design new signal delivery protocol and mechanism
e Clevel global variables

* Avoid them.
* Main guild can use C extensions depends on them

e Current thread
* Use TLS (temporary), but we will change all of C APIs to receive context data as first parameter in the future.

Performance evaluation

*On 2 core virtual machine
e Linux on VirtualBox on Windows 7

*Now, we can’t run Ruby program on other than
main guild, so other guilds are implemented by C
code

Performance evaluation
Simple numeric task in parallel

Fibonacci
: , Execution
Main _-+ Fibonacci time (sec)
Guild ! Fibonacci Single-Guild 19.45

\ Fibonacci Multi-Guild 10.45
Guild

Total 50 requests to compute fib(40)
Send 40 (integer) in each request

Performance evaluation
Copy/Move

Execution
time (sec)
sum Single-Guild 1.00

) Multi/ref 0.64
Main _=% sum

: Ly Multi/move -
Guild SUm

sUum
Guild Too slow!!

Because “move” need to
Total 100 requests to compute sum of array check all of elements

Send (1..10 000 _000).to_a in each request

Performance evaluation

Copy/Move
sum E.xecution
time (sec)
Main / sum Single-Guild 1.00
Guild = SUMm Multi/ref 0.64

\ sum Multi/move 0.64
Guild

If we know this array only has immutable objects,
we don’t need to check all elements => special data structure

Check our goal for Ruby 3

* We need to keep compatibility with Ruby 2.
* OK: Only in main guild, it is compatible.

* We can make parallel program.
* OK: Guilds can run in parallel.

* We shouldn’t consider about locks any more.
* OK: Only using copy and move, we don’t need to care locks.

* We can share objects with copy, but copy operation should be fast.
* OK: Move (transfer membership) idea can reduce overhead.

* We should share objects if we can.
* OK: We can share immutable objects fast and easily.

* We can provide special objects to share mutable objects like Clojure
if we really need speed.

* OK: Yes, we can provide.

Related work

* “Membership transfer” is proposed by
[Nakagawa 2012], but not completed

* Alias analysis with type systems
* Ruby doesn’t support static type checking

* Dynamic alias analysis with runtime checking
* We need to reduce dynamic check overhead

* We can’t insert dynamic checking completely (this
is why | found “membership transfer”)

Approach comparison

Process/MVM

METLRET)

Heap

Communication
Mutable objects

Communication
Immutable object

Lock
ISeq (bytecode)

Class/Module
(namespace)

Separate

Copy

Copy

Don’t need

Copy

Copy

Separate

Copy

Share (maybe)

Don’t need
Share

Copy (fork)

Guild Thread
(copy/move)

Share Share
Copy/Move Share
Share Share
Share Share
Share Share

Summary

*One goal of Ruby 3: better concurrency support

*Guild: Isolate objects between guilds
* Objects belong to one guild
* Threads belong to different guilds can run parallel
e Communication using “transfer membership”

*No implementation (just idea)

Thank you for your attention

Koichi Sasada

<kol@heroku.com> 7 ¢

heroku

